NOVINKA – Víkendový online kurz Software tester, který tě posune dál. Zjisti, jak na to!
NOVINKA - Online rekvalifikační kurz Java programátor. Oblíbená a studenty ověřená rekvalifikace - nyní i online.

Gravitační pole a centrální gravitační pole Země

Gravitační pole

 Gravitační pole je prostor, ve kterém působí gravitační síly. Každá dvě tělesa jsou k sobě přitahovány silou, kterou nazýváme gravitační síla.

 

 

Newtonův gravitační zákon   

newtonuv gravitacni zakonDva hmotné body o hmotnosti m1, m2 se navzájem přitahují gravitačními silami Fg, jejichž velikost je přímo úměrná druhé mocnině jejich vzdálenosti r. Platí tedy

<center>gravitacni zakon</center>

kde gravitační konstanta k (kapa) = 6,67 . 10–11 N × m2 × kg–2. (tab. vzadu)

Př : m1 = 5 t = 5 * 103 kg 

  m2 = 15 t = 15 * 103 kg 

  r = 2m 

 Fg = (6,67 * 10−11 * 5 * 103 * 15 * 103) / 4 = 125 * 10−5 = 0,00125 N 

 

Intenzita gravitačního pole

V okolí každého tělesa existuje gravitační pole, které působí na jiná tělesa.

 - intenzita gravitačního pole zavedena pro jejich porovnávání

 - daném místě pole ji definujeme:

intenzita gravitacniho pole

 - vektorová veličina stejného směru jako gravitační síla Fg, která působí v daném místě na HB. [K] = N × kg–1

 

Po dosazení do vztahu za gravitační sílu dle Newt. zákona:

Vektor intenzity gravitačního pole vždy směřuje do středu tělesa o hmotnosti M. Takové pole je centrální gravitační pole a střed tělesa gravitační střed centrálního pole.

Velikost intenzity gravitačního pole ve výšce h nad zemským povrchem je

 

Velikost intenzity se s rostoucí výškou nad povrchem Země zmenšuje. Když sledujeme gravitační pole Země na malých plochách, např. na ploše o rozměrech několika set metrů, lze gravitační pole považovat za homogenní. Intenzita v homogenním gravitačním poli je konstantní.

 

MZ je hmotnost Země (5,98 × 1024 kg)

 RZ poloměr Země (6,37 × 106 m)

 

 

Pohyby těles v centrálním (radiálním) gravitačním poli Země

pohyby teles - radiální gravitační pole je pole, kde směr gravitační síly a zrychlení míří ve všech místech do jednoho bodu - středu.

 

 

 

 

 

Pohyby těles v radiálním (centrálním) tíhovém poli

Vrhy jsou pohyby těles homogenním tíhovém poli. U pohybů raket, družic nebo kosmických lodí se musí počítat s tím, že se pohybují už v radiálním poli. Trajektorie družice závisí na její rychlosti:

 

Kosmické rychlosti

Poměrně malá počáteční rychlost - těleso se pohybuje po části elipsy, než narazí na povrch Země. Část elipsy se zvětšuje s rychlostí tělesa. Při větších rychlostech už těleso na zemský povrch nedopadne, ale opíše celou elipsu.

 

1. kosmická rychlost(kruhová) 

 - těleso opisuje kružnici se středem ve středu Země. Na toto těleso působí jednak zemská gravitace Fg jednak odstředivá(dos­tředivá) síla Fo. Tyto síly jsou v rovnováze.kosmicke rychlosti

pro velmi malou výšku: vk = 7,9 km × s–1 (zanedbáme h)

Oběžná doba družice: T = 2pi(Rz + h) / vk 

Při větších rychlostech těleso přechází na pohyb kolem Země po elipse, a to až do rychlosti vp

 kosmicke rychlosti 

2. kosmická rychlost (parabolická /úniková/)

Při rychlosti vp = 11,2 km × s–1 (keplerovy zakony) se eliptická trajektorie mění na parabolickou a těleso se trvale vzdaluje od Země (je však v gravitačním poli Slunce)

 

3. kosmická rychlost

Po překročení rychlosti v = 16,7 km × s–1 těleso opouští sluneční soustavu.  

 

Pro lety ve vesmíru se využívá zákonu setrvačnosti a gravitace (ve vakuu je nic nebrzdí). Motory se používají jen při startu, brzdění a korekcích kurzu. Jinak družice letí setrvačností a pro zrychlení využívají gravitace planet → gravitační praky.

-          Rychlosti jsou v tab. na úplně poslední straně

 

Keplerovy zákony - pohyby těles v grav. poli Slunce

 - Pohyby planet okolo Slunce se řídí Keplerovými zákony (hlavní roli hraje grav. pole slunce - excentricita), platí nejen pro planety, ale i jiná tělesa (měsíce, družice...)

1. Keplerův zákon (zákon drah):             keplerovy zakony

Planety se pohybují kolem Slunce po elipsách (téměř kružnicích), které je jejich společným ohniskem. P a A.

 

2. Keplerův zákon (zákon plošných rychlostí)

2 kepleruv zakonPlocha opsaná průvodičem planety (spojuje střed planety se středem Slunce) za jednotku času je vždy stejná. Důsledek: pohyb planet není rovnoměrný.

 P - perihélium (přísluní) - nejrychleji

A - afélium (odsluní) - nejpomaleji

 

3. Keplerův zákon (zákon oběžných dob):         

Poměr druhých mocnin oběžných dob dvou planet se rovná poměru třetích mocnin délek hlavních poloos jejich drah.

keplerovy zakony - v tab.

Vzdálenosti ve sluneční soustavě se měří v astronomických jednotkách AU, které odpovídají střední vzdálenosti Země od Slunce.

 

 

Gravitační a tíhové zrychlení

Gravitační síla udílí tělesu o hmotnosti m v daném bodě gravitační zrychlení ag = Fg/m

(je totožná s intenzitou gravitačního pole K = ag)

Na povrchu Země je gravitační zrychlení ag = 9,83  m × s–1 (často zaokrouhlováno na 10)

 

Na Zemi se však setkáváme s tíhovou silou FG a tíhovým zrychlením g. Ty se od gravitační síly, resp. gravitačního zrychlení liší. Je to proto, že Země se otáčí kolem své osy. Na povrchu Země působí kromě gravitační síly Fg ještě setrvačná odstředivá síla Fs otáčení Země kolem své osy (otáčející se soustava je neinerciální soustava).,

 

Tíhová síla FG je jejich vektorovým součtem:

FG = Fg + Fs

 

Působením tíhové síly vzniká tíhové zrychlení g.

Svislý směr je směr tíhové síly a směr tíhového zrychlení, ale není to vždy směr do středu Země (do středu země tíhová síla směřuje jen na pólech a na rovníku). Prostor, kde se projevují tíhové síly se označuje jako tíhové pole.

Pro velikost odstředivé síly Fs platí:

Fs = m × w2 × r = (m × w2 × RZ × cos j)

r je vzdálenost místa na povrchu Země od osy otáčení, w úhlová rychlost otáčení země (w = 2p/T; T = 1 den), RZ je poloměr Země, j zeměpisná šířka místa.

Z toho vyplývá, že největší odstředivá síla je na rovníku a nulová na pólech. Velikost tíhového zrychlení závisí natihove zrychleni zeměpisné šířce a také na nadmořské výšce (liší se však jen v řádech setin). Dohodou bylo stanoveno normální tíhové zrychlení → u hladiny moře na 45° severní šířky Þ 9,80665 m × s–2. V malé oblasti na zemském povrchu lze i tíhové pole považovat za homogenní.

 

-       nejmenší na rovníku - 9,79 ms−2tihove zrychleni

-       u nás - 9,81 ms−2

-       největší na pólech 9,83 ms−2

 

 

 

Potenciál tíhového pole Fí je polohová energie připadající na jednotku hmotnosti.

 - není v tab.

 

Ekvipotencionální plochy: množina bodů, které mají stejný potenciál, u Země kulové plochy (v desk. Kondenzátoru jsou to rovnoběžky). 

 

 

 

Pohyby těles v homogenním tíhovém poli Země

homogenni pole zeme- homogenní gravitační pole je pole, kde směr gravitační síly a zrychlení míří stále stejným směrem. Respektive změny jsou tak nepatrné, že je můžeme zanedbat. To platí při povrchu planet na vzdálenosti několika set m.





1) Rovnoměrný přímočarý pohyb

 - nejjednodušší pohyb, těleso urazí za stejné časové celky stejné dráhy, rychlost je konstantní  - nemění svou velikost ani směr. (a = 0)

rovnomerny pohyb primocary rovnomerny pohyb primocary 2  

 

 

 

    v = s / t;         s = s0 + v * t

 

  

Rychlost na čase         dráha na čase – oboje přímka,      vyšrafovaná rychlost v metrech

 

2) Rovnoměrně zrychlený / zpomalený přímočarý pohyb                                            

 - velikost ani směr zrychlení se nemění, probíhá po přímce. a = (v - v0) / t = konst. 

 - například: auto vyjede z obce a zrychlí (mění se velikost rychlosti a ne její směr)

okamžitá rychlost: v = v0 + at;        Rychlost je přímo úměrná času a konstantou úměrnosti je zrychlení. 

s = s0 + v0t + 1/2 a t2                         Dráha je přímo úměrná čtverci času 

pro rovnoměrně zpomalený pohyb by platilo: v = v0 - at;     s = s0 + v0t - 1/2 a t2

trajektorií je přímka

Graf závislosti rychlosti na čase:


rovnomerne zrychleny pohyb

rovnomerne zrychleny pohyb 2

 

 


 

 

-  Vyšrafovaná část / je dráha při rychlosti v0, vyšrafovaná \ je dráha vykonaná při RZP, Suma = celk. dráha

graf závislosti dráhy na čase je parabola:

rovnomerne zrychleny pohyb 3

rovnomerne zrychleny pohyb 4

 

 

 

 

 

  

 

rovnoměrně zrychlený pohyb (zrychlení pro směr pohybu)                                rovnoměrně zpomalený pohyb (proti)

(v0 = 0, zrychlení = a)

 

3) Volný pád

 - speciální případ rovnoměrně zrychleného pohybu, směr je vždy do středu Země, zrychlení se značí g = tíhové zrychlení = 9,81 u nás.

 - předpokládáme, že těleso padá z klidu - v0 = 0

v = g * t;    s = 1/2 g t2

rychlost dopadu: s=1/2gt2 -> t=sqrt(2h/g) -> v = sqrt (2gh), graf parabola, jen opačně. h = s

 

4) Vrhy

 - složené pohyby, z volného pádu a rovnoměrného přímočarého pohybu

počáteční rychlost je nenulová -> v0 != 0

Svislý vrh vzhůru

vrh svisly vzhuru

s = v0t - 1/2 a t2

v = v0 - gt

dolů: to samé, jen opačně znamínka


Vodorovný

vrh vodorovnyPř. Vytékající kapalina, kulička, která přejede hranu vodorovného stolu.

vzdálenost od místa vrhu

  d = v0 * t - není v tab.

okamžitá výška:                    okamzita vyska v case  - není v tab. 

 

 


Vrh šikmý

 vrh sikmy- využívá se v balistice a jeho grafem je balistická křivkavrh sikmy 2

 - délka závisí na počáteční rychlosti v0 a na úhlu a, pod kterým bylo těleso vrženo.

 Délka vrhu bude největší pro úhel 45°, stejná pro dvojice a a 90° – a, tzn. 15° a 75° nebo 30° a 60°.

Př. Výstřel z děla (a < 45°), z minometu (a > 45°).

Trajektorií šikmého vrhu parabola ve vakuu a balistická křivka ve vzduchu. Balistická křivka je vždy kratší než parabola, protože ve vzduchu proti pohybu působí odpor prostředí.

 

5) Nerovnoměrný pohyb

 - mění se rychlost, čili zavádíme pojem průměrná rychlost

vp = delta v / delta t - podíl rozdílů drah (s1 - s2) a časů (t1 - t2)


 

Článek pro vás napsal David Hartinger
Avatar
Uživatelské hodnocení:
Ještě nikdo nehodnotil, buď první!
David je zakladatelem ITnetwork a programování se profesionálně věnuje 15 let. Má rád Nirvanu, nemovitosti a svobodu podnikání.
Unicorn university David se informační technologie naučil na Unicorn University - prestižní soukromé vysoké škole IT a ekonomie.
Aktivity